Como vocĂȘ resolve # cos ^ 2x + 2cosx + 1 = 0 # durante o intervalo 0 a 2pi?

Responda:

Resolva como um primeiro quadrĂĄtico para encontrar o valor de #cos(x)#.

Explicação:

Fatore o lado esquerdo.

#cos^2(x) + 2cos(x) + 1 = (1 + cos(x))^2 = 0#

Isto significa que

#1 + cos(x) = 0#

or

#cos(x) = -1#

A partir do grĂĄfico de #y = cos(x)#
grĂĄfico {cos (x) [-10, 10, -5, 5]}
O Ășnico valor de #x# no intervalo #0 <= x <= 2pi# Isso dĂĄ #cos(x) = -1# is #x = pi#.