Como vocĂȘ resolve # lnx = 2 #?

Responda:

#x=7.3891#

Explicação:

If #a^n=b#, temos #log_ab=n#, Onde #a# Ă© chamado base. Quando a base Ă© #a=e#, temos o logaritmo de Napier e nĂŁo precisamos escrever base, apenas escrevemos como #lnb=n# que Ă© equivalente a #b=e^n#.

ConseqĂŒentemente, #lnx=2#, pode ser escrito como #x=e^2# e quanto #e^2=7.3891#, #x=7.3891#