How to give input to an array in Python
Read Carefully.
1. Python add to Array
- If you are using List as an array, you can use its append(), insert(), and extend() functions. You can read more about it at Python add to List.
- If you are using array module, you can use the concatenation using the + operator, append(), insert(), and extend() functions to add elements to the array.
- If you are using NumPy arrays, use the append() and insert() function.
2. Adding elements to an Array using array module
- Using + operator: a new array is returned with the elements from both the arrays.
- append(): adds the element to the end of the array.
- insert(): inserts the element before the given index of the array.
- extend(): used to append the given array elements to this array.
- import array
- arr1 = array.array('i', [1, 2, 3])
- arr2 = array.array('i', [4, 5, 6])
- print(arr1) # array('i', [1, 2, 3])
- print(arr2) # array('i', [4, 5, 6])
- arr3 = arr1 + arr2
- print(arr3) # array('i', [1, 2, 3, 4, 5, 6])
- arr1.append(4)
- print(arr1) # array('i', [1, 2, 3, 4])
- arr1.insert(0, 10)
- print(arr1) # array('i', [10, 1, 2, 3, 4])
- arr1.extend(arr2)
- print(arr1) # array('i', [10, 1, 2, 3, 4, 4, 5, 6])
3. Adding elements to the NumPy Array
- append(): the given values are added to the end of the array. If the axis is not provided, then the arrays are flattened before appending.
- insert(): used to insert values at the given index. We can insert elements based on the axis, otherwise, the elements will be flattened before the insert operation.
- >>> import numpy as np
- >>> np_arr1 = np.array([[1, 2], [3, 4]])
- >>> np_arr2 = np.array([[10, 20], [30, 40]])
- >>>
- >>> np.append(np_arr1, np_arr2)
- array([ 1, 2, 3, 4, 10, 20, 30, 40])
- >>>
- >>> np.append(np_arr1, np_arr2, axis=0)
- array([[ 1, 2],
- [ 3, 4],
- [10, 20],
- [30, 40]])
- >>>
- >>> np.append(np_arr1, np_arr2, axis=1)
- array([[ 1, 2, 10, 20],
- [ 3, 4, 30, 40]])
- >>>
- >>> np.insert(np_arr1, 1, np_arr2, axis=0)
- array([[ 1, 2],
- [10, 20],
- [30, 40],
- [ 3, 4]])
- >>>
- >>> np.insert(np_arr1, 1, np_arr2, axis=1)
- array([[ 1, 10, 30, 2],
- [ 3, 20, 40, 4]])
- >>>