Como você diferencia y = log x ^ 2 ?

Como você diferencia y = log x ^ 2 ? Responda: dy/dx=2/x Explicação: There are 2 possible approaches. color(blue)”Approach 1″ differentiate using the color(blue)”chain rule” color(red)(bar(ul(|color(white)(2/2)color(black)(d/dx(log(f(x)))=1/(f(x)).f'(x))color(white)(2/2)|))) y=log(x^2) rArrdy/dx=1/x^2.d/dx(x^2)=1/x^2 xx2x=2/x color(blue)”Approach 2″ Using the color(blue)”law of logs” then differentiate. color(orange)”Reminder ” color(red)(bar(ul(|color(white)(2/2)color(black)(logx^n=nlogx)color(white)(2/2)|))) y=logx^2=2logx rArrdy/dx=2xx 1/x=2/x