Como você encontra a integração de #log x #?

Responda:

#int log(x) dx=1/ln(10)(xln(x)-x)+C=x/ln(10)(ln(x)-1)+C#

Explicação:

#int log(x) dx=int ln(x)/ln(10) dx#
#=1/ln(10)int ln(x) dx#
usando o Integração por partes :
#int f(x)g'(x) dx=[f(x)g(x)]-int f'(x)g(x) dx#
Lá : #f(x)=ln(x), f'(x) =1/x,g(x)=x,g'(x)=1#
Assim:

#int log(x) dx=1/ln(10)(xln(x)-int dx)#
Assim:

#int log(x) dx=1/ln(10)(xln(x)-x)+C=x/ln(10)(ln(x)-1)+C#

Em geral, #int log_"n"(x) dx=x/ln(n) (ln(x)-1)+C#

#n in RR""_+^*# #{1}#, #C in RR#