Como você encontra a raiz quadrada do 7?
Responda:
#sqrt(7) ~~ 2.645751311#
Explicação:
Desde #7# é um número primo, não possui fatores quadrados e sua raiz quadrada não pode ser simplificada.
É um número irracional, portanto, não pode ser representado exatamente por #p/q# para quaisquer números inteiros #p, q#.
No entanto, podemos encontrar boas razões aproximações para #sqrt(7)#.
Primeira nota que:
#8^2 = 64 = 63+1 = 7*3^2 + 1#
Isto está na forma da equação de Pell:
#p^2 = n q^2 + 1#
com #n = 7#, #p = 8# e #q = 3#.
Isto significa que #8/3# é uma aproximação econômica para #sqrt(7)# e isso também significa que podemos usar #8/3# derivar a expansão contínua da fração de #sqrt(7)#:
#8/3 = 2 + 1/(1+1/(1+1/1))#
e, portanto, podemos deduzir:
#sqrt(7) = [2;bar(1,1,1,4)] = 2 + 1/(1+1/(1+1/(1+1/(4+1/(1+1/(1+1/(1+1/(4+...))))))))#
A próxima aproximação econômica é dada truncando a expansão da fração continuada imediatamente antes da próxima #4#, Isto é,
#sqrt(7) ~~ [2;1,1,1,4,1,1,1] = 2 + 1/(1+1/(1+1/(1+1/(4+1/(1+1/(1+1/1)))))) = 127/48 = 2.6458bar(3)#
Essa também é uma solução da equação de Pell para #7#, pois encontramos:
#127^2 = 16129 = 16128+1 = 7*48^2+1#
Se você quiser mais precisão, trunque pouco antes da próxima #4# ou o seguinte.
Expandindo a parte repetida da fração continuada para #sqrt(7)# podemos derivar uma fração contínua generalizada:
#sqrt(7) = 21/8+(7/64)/(21/4+(7/64)/(21/4+(7/64)/(21/4+(7/64)/(21/4+...))))#
Usando uma calculadora, encontramos:
#sqrt(7) ~~ 2.645751311#