Como você encontra os valores de #sin 2theta # e #cos 2theta # quando #cos theta = 12 / 13 #?

Responda:

Abaixo

Explicação:

#theta# pode estar no primeiro quadrante #0<=theta<=90# ou o quarto quadrante #270<=theta<=360#

If #theta# está no primeiro quadrante,
então
#sintheta=5/13#
#costheta=12/13#
#tantheta=5/12#

Portanto,
#sin2theta=2sinthetacostheta=2times5/13times12/13=120/169#

#cos2theta=cos^2theta-sin^2theta=(12/13)^2-(5/13)^2=144/169-25/169=119/169#

If #theta# está no quarto quadrante,
então
#sintheta=-5/13#
#costheta=12/13#
#tantheta=-5/12#

Portanto,
#sin2theta=2sinthetacostheta=2times-5/13times12/13=-120/169#

#cos2theta=cos^2theta-sin^2theta=(12/13)^2-(-5/13)^2=144/169-25/169=119/169#