Determine a expansão da série Fourier para onda senoidal retificada de onda completa i. (detalhes dentro)?

Responda:

Veja abaixo

Explicação:

Uma vez retificado, é até , então você só precisa da série cosseno. Note que agora tem período #2L = 2 pi#:

Parte (i)

  • #a_n = 1/L int_0^(2L) f(x) cos ((n pi x)/L) dx#

# implies a_n = 5/pi int_0^(2 pi) sin (theta/2) cos (n theta) d theta#

Usando:

# (sin ( X + Y) + sin (X - Y) )/2 = sin X cos Y#

# = 5/(2pi) int_0^(2 pi) sin (1/2+n) theta + sin (1/2 - n) theta d theta#

# = 5/(2pi) [ - 2/(1+2n) cos (1/2+n) theta - 2/(1-2n)cos (1/2 - n) theta ]_0^(2 pi)#

# =- 5/pi[ ( 1/(1+2n) cos (1/2+n) 2pi + 1/(1-2n)cos (1/2-n)2pi ) - (1/(1+2n) + 1/(1-2n)) ] = square#

  • # cos (1/2 - n) 2pi = - cos 2 n pi = cos (1/2 + n) 2pi#

  • #- cos 2 n pi = -1, qquad n in mathbb Z#

# square =- 5/pi ( (-2) ( 1/(1+2n) + 1/(1-2n))#

  • #1/(1+n) + 1/(1-n) = 2/(1 - 4 n^2)#

#square = 20/pi 1/(1 - 4 n^2) = a_n#

  • #implies a_0 = 20/pi#

Finalmente, a partir da definição:

#f(theta) = a_0/2 + sum_(n = 1)^(oo) a_n cos n theta #

#implies f(theta) = 10/ pi ( 1 - 2/3 cos theta - 2/15 cos 2 theta - 2/35 cos 3 theta ....) #

Mais formalmente:

#f(theta) = 10/pi (1 + sum_(n = 1)^(oo) 2/(1 - 4 n^2) cos n theta ) qquad triangle#

Parte II)

A partir de #triangle#:

#f(pi) = 5 = 10/ pi ( 1 - 2/3 cos (pi) - 2/15 cos (2 pi) - 2/35 cos (3 pi) ...)#

#implies 5pi = 10 ( 1 + 2/3 - 2/15 + 2/35 ...) #

Ou:

#implies 5pi = 20 ( 1/2 + 1/3 - 1/(3(5)) + 1/(5(7)) ...)#