What is the Taylor series expansion of [math]e^{-x}[/math] about zero?
first, you should know what is Taylor series expansion and what is the meaning of about zero
Taylor series- if you have any function, the function is differentiable then we differentiate continuously and about of any point is called the Taylor series
if any function is differentiated about the origin or x=0 then this series is called as Maclaurin series
so I move the question
question the what is the Taylor series expansion of exp(-x) about zero point
according to Taylor series expansion
y= f(x)
where x=a
and a is the point
so that
f(x)= f(a)+ (x-a)f’(a)+(x-a)^2/ 2! +…………………………..infinte
at point a
in question
f(x) = exp(-x)
x=0
first term = f(x) = exp(-x)
put the point f(0)= exp(0) =1
second term
f’(x) = -exp(-x)
(x-a)f’(a)= (x-0) f’(0)= x(-1)=-x
third term
f’’(x)= exp(0)
(x-a)^2.f’’(a)/2!= (x-0)^2*(1)/2! = x^2/2
and you will find the other terms fourth, fifth terms and so on according to your question
now finally the series of exp(-x)
exp(-x)= 1 - x + x^2 /2! - x^3/3!+ ……………………….
Artigos semelhantes
- Como comercializar seus aplicativos Android quando você tem orçamento zero ou quase zero
- Como encontrar a série Taylor de uma função logarítmica
- Quais são as melhores músicas do Taylor Swift?
- Qual é a sua crítica sobre a reputação da Taylor Swift Stadium Tour Netflix especial?
- Porque é que o Taylor está na série Showtime Biliões de pessoas referidas como "eles"?