Qual é a derivada de # y = arctan sqrt ((1-x) / (1 + x)) #?
Responda:
#(dy)/(dx)=-sqrt((1+x)^5)/(2sqrt(1-x))#
Explicação:
Deixei #u=sqrt((1-x)/(1+x))#. Observe também #(1-x)/(1+x)=1-(2x)/(1+x)#
então usando regra da cadeia #(du)/(dx)=1/(2sqrt((1-x)/(1+x)))xxd/(dx)(1-(2x)/(1+x))#
= #sqrt(1+x)/(2sqrt(1-x))xxd/(dx)(1-(2x)/(1+x))#
= #sqrt(1+x)/(2sqrt(1-x))xx(-(2(1+x)-2x)/(1+x)^2)#
= #sqrt(1+x)/(2sqrt(1-x))xx(-2/(1+x)^2)#
= #-sqrt(1+x)^3/sqrt(1-x)#
Conseqüentemente #y=arctanu# e, portanto #(dy)/(dx)=1/(1+u^2)xx(du)/(dx)#
ou seja #(dy)/(dx)=1/(1+(1-x)/(1+x))xx(-sqrt((1+x)^3)/sqrt(1-x))#
= #-(1+x)/2xxsqrt((1+x)^3)/sqrt(1-x)#
= #-sqrt((1+x)^5)/(2sqrt(1-x))#