Como você integra # (tan (x)) / x #?
Responda:
Não acredito que exista uma função intrínseca que seja o anti-derivado
A solução da série Power é:
# int tanx/xdx = x+1/9x^3+2/75x^5-17/2205x^7+62/25515x^9+...
#
Explicação:
Acredito que a única maneira de lidar com essa integral é usar a série Maclaurin power para #tanx#; do seguinte modo;
# int tanx/xdx = int (x+1/3x^3+2/15x^5-17/315x^7+62/2835x^9+... )/xdx#
# :. int tanx/xdx = int 1+1/3x^2+2/15x^4-17/315x^6+62/2835x^8+... #
# :. int tanx/xdx = x+1/3x^3/3+2/15x^5/5-17/315x^7/7+62/2835x^9/9+...
#
# :. int tanx/xdx = x+1/9x^3+2/75x^5-17/2205x^7+62/25515x^9+...
#