Como você simplifica a expressão tan ^ 2x / (secx + 1) tan2xsecx+1?
tan^2 x=sec^2 x-1=(sec x+1)(sec x -1)tan2x=sec2x−1=(secx+1)(secx−1)
rArr tan^2 x/(sec x+1)=sec x-1, or, =(1-cos x)/cos x⇒tan2xsecx+1=secx−1,or,=1−cosxcosx,
tan^2 x=sec^2 x-1=(sec x+1)(sec x -1)tan2x=sec2x−1=(secx+1)(secx−1)
rArr tan^2 x/(sec x+1)=sec x-1, or, =(1-cos x)/cos x⇒tan2xsecx+1=secx−1,or,=1−cosxcosx,