Qual é a derivada de pi ^ x ?

Responda:

d/dxpi^x = pi^xln(pi)

Explicação:

d/dxpi^x = d/dx e^ln(pi^x)

=d/dxe^(xln(pi))

=e^(xln(pi))(d/dxxln(pi))

(Aplicando o regra da cadeia com as funções e^x e xln(pi))

=e^ln(pi^x)ln(pi)

=pi^xln(pi)

Observe que esse método pode ser generalizado para mostrar que d/dxa^x = a^xln(a) para qualquer constante a>0