Qual é a derivada de pi ^ x ?
Responda:
d/dxpi^x = pi^xln(pi)
Explicação:
d/dxpi^x = d/dx e^ln(pi^x)
=d/dxe^(xln(pi))
=e^(xln(pi))(d/dxxln(pi))
(Aplicando o regra da cadeia com as funções e^x e xln(pi))
=e^ln(pi^x)ln(pi)
=pi^xln(pi)
Observe que esse método pode ser generalizado para mostrar que d/dxa^x = a^xln(a) para qualquer constante a>0