Qual é o comprimento de onda de um elétron viajando a 5x10 ^ 5 m / s?

#lambda = "1.455 nm"#

Você pode usar o de Broglie, uma vez que um elétron tem massa. Qual é a velocidade de um fóton no vácuo com um comprimento de onda de #"0.1 nm"#?


A relação é:

#lambda = h/p = h/(mv)#

where:

  • #lambda# is the wavelength in #"m"#.
  • #h = 6.626 xx 10^(-34) "J"cdot"s"# is Planck's constant.
  • #m# is the mass of the particle, such as the electron, in #"kg"#. The particle must have a mass for this relation to work.
  • #v# is the forward velocity of the particle, in #"m/s"#.

Portanto, o comprimento de onda é:

#lambda = (6.626 xx 10^(-34) "J"cdot"s")/((9.1094 xx 10^(-31) "kg")(5 xx 10^(5) "m/s"))#

Sabemos que #"1 J" = "1 kg" cdot "m"^2"/s"^2#. Tão:

#color(blue)(lambda) = (6.626 xx 10^(-34) cancel"kg" cdot "m"^(cancel(2))"/"cancel"s")/((9.1094 xx 10^(-31) cancel"kg")(5 xx 10^(5) cancel"m""/"cancel"s"))#

#= 1.455 xx 10^(-9)# #"m"#

#=# #color(blue)("1.455 nm")#

Por que isso não funciona em um fóton?

Deixe um comentário