Como você diferencia y = log x ^ 2 y=logx2?
Responda:
dy/dx=2/xdydx=2x
Explicação:
There are 2 possible approaches.
color(blue)"Approach 1"Approach 1
differentiate using the color(blue)"chain rule"chain rule
color(red)(bar(ul(|color(white)(2/2)color(black)(d/dx(log(f(x)))=1/(f(x)).f'(x))color(white)(2/2)|)))¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯∣∣∣22ddx(log(f(x)))=1f(x).f'(x)22∣∣∣−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
y=log(x^2)y=log(x2)
rArrdy/dx=1/x^2.d/dx(x^2)=1/x^2 xx2x=2/x⇒dydx=1x2.ddx(x2)=1x2×2x=2x
color(blue)"Approach 2"Approach 2
Using the color(blue)"law of logs"law of logs then differentiate.
color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(logx^n=nlogx)color(white)(2/2)|)))Reminder ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯∣∣∣22logxn=nlogx22∣∣∣−−−−−−−−−−−−−−−−−−
y=logx^2=2logxy=logx2=2logx
rArrdy/dx=2xx 1/x=2/x⇒dydx=2×1x=2x