Como você fatora # x ^ 2-9 #?
Responda:
#(x-3)(x+3)#
Explicação:
#x^2-9" is a "color(blue)"difference of squares"#
#"and in general factorises as"#
#•color(white)(x)a^2-b^2=(a-b)(a+b)#
#"here "a=x" and "b=3#
#rArrx^2-9=(x-3)(x+3)#
#(x-3)(x+3)#
#x^2-9" is a "color(blue)"difference of squares"#
#"and in general factorises as"#
#•color(white)(x)a^2-b^2=(a-b)(a+b)#
#"here "a=x" and "b=3#
#rArrx^2-9=(x-3)(x+3)#