Como você representa graficamente # y = 3cosx #?

Responda:

Ver abaixo:

Explicação:

Vamos fazer o gráfico como um último passo, mas vamos analisar os diferentes parâmetros das funções seno e cosseno. Vou usar radianos ao fazer isso a propósito:

#f(x)=acosb(x+c)+d#

Parâmetro #a# afeta a amplitude da função, normalmente Sine e Cosine têm um valor máximo e mínimo de 1 e -1 respectivamente, mas aumentar ou diminuir esse parâmetro alterará isso.

Parâmetro #b# afeta o período (mas NÃO é o período diretamente) - é assim que afeta a função:

Período = #(2pi)/b#

então um valor maior de #b# diminuirá o período.

#c# é o deslocamento horizontal; portanto, alterar esse valor alterará a função para a esquerda ou para a direita.

#d# é o eixo principal em que a função irá girar, normalmente este é o eixo x, #y=0#, mas aumentando ou diminuindo o valor de #d# vai alterar isso.

Agora, como podemos ver, a única coisa que afeta nossa função é o parâmetro #a#- que é igual a 3. Isso multiplicará efetivamente todos os valores da função cosseno por 3; portanto, agora podemos encontrar alguns pontos no gráfico inserindo alguns valores:

#f(0)=3Cos(0)= 3 times 1=3#

#f(pi/6)=3Cos(pi/6)=3 times (sqrt3/2)=(3sqrt3)/2#

#f(pi/4)=3Cos(pi/4)=3 times 1/(sqrt2)=3/(sqrt2)#

#f(pi/2)=3Cos(pi/2)=3 times 0 =0#

#f(pi)=3Cos(pi)=3 times -1=-3#

(e todos os múltiplos desses números, mas devem ser suficientes para um gráfico)

Portanto, será mais ou menos assim:

gráfico {3cosx [-0.277, 12.553, -3.05, 3.36]}