Como você resolve cos2x = sinx no intervalo 0 <= x <= 2pi ?
If cos(2x) = sin(x)
então
1-2sin^2(x) = sin(x)
2sin^2(x) +sin(x) -1 =0
Substituindo k=sin(x)
2k^2+k-1 = 0
(2k-1)(k+1) = 0
sin(x) = 1/2 or sin(x) =-1
If sin(x) = 1/2 (Por 0<=x<=2pi)
x=pi/6 =30^o or x= (5pi)/6 = 150^o
If sin(x) = -1 (Por 0<=x<=2pi)
x=(3pi)/2 = 270^o
So x epsilon {pi/6, (5pi)/6, (3pi)/2}
(ou o equivalente em graus)