How do you integrate cscx cscx?
Responda:
int csc x dx = - ln|csc(x) + cot(x)| +C ∫cscxdx=−ln|csc(x)+cot(x)|+C
Explicação:
There are many ways to prove this result. The quickest method that I am aware of is as follows:
int csc x dx = int cscx (cscx + cotx)/(cscx + cotx) dx ∫cscxdx=∫cscxcscx+cotxcscx+cotxdx
" "= int (csc^2x + cscxcotx)/(cscx + cotx) dx =∫csc2x+cscxcotxcscx+cotxdx
Then we perform simple substitution, Let
u = cscx + cotx => (du)/dx = -cscxcotx - csc^2x u=cscx+cotx⇒dudx=−cscxcotx−csc2x
" "= -(cscxcotx + csc^2x) =−(cscxcotx+csc2x)
E entao:
int csc x dx = int (-1/u) du ∫cscxdx=∫(−1u)du
" "= - int 1/u du =−∫1udu
" "= - ln|u| +C =−ln|u|+C
" "= - ln|cscx + cotx| +C =−ln|cscx+cotx|+C