How do you integrate cscx cscx?

Responda:

int csc x dx = - ln|csc(x) + cot(x)| +C cscxdx=ln|csc(x)+cot(x)|+C

Explicação:

There are many ways to prove this result. The quickest method that I am aware of is as follows:

int csc x dx = int cscx (cscx + cotx)/(cscx + cotx) dx cscxdx=cscxcscx+cotxcscx+cotxdx
" "= int (csc^2x + cscxcotx)/(cscx + cotx) dx =csc2x+cscxcotxcscx+cotxdx

Then we perform simple substitution, Let

u = cscx + cotx => (du)/dx = -cscxcotx - csc^2x u=cscx+cotxdudx=cscxcotxcsc2x
" "= -(cscxcotx + csc^2x) =(cscxcotx+csc2x)

E entao:

int csc x dx = int (-1/u) du cscxdx=(1u)du
" "= - int 1/u du =1udu
" "= - ln|u| +C =ln|u|+C
" "= - ln|cscx + cotx| +C =ln|cscx+cotx|+C