Qual é a derivada de # 3 ^ x #?
Responda:
#3^xln3#
Explicação:
Begin by letting #y=3^x#
now take the ln of both sides.
#lny=ln3^xrArrlny=xln3#
differentiate #color(blue)"implicitly with respect to x"#
#rArr1/y dy/dx=ln3#
#rArrdy/dx=yln3#
now y = #3^xrArrdy/dx=3^xln3#
This result can be #color(blue)"generalised"# as follows.
#color(red)(bar(ul(|color(white)(a/a)color(black)(d/dx(a^x)=a^xlna)color(white)(a/a)|)))#