Qual é a derivada do arctan (2x) arctan(2x)?
Responda:
2/(1+4x^2)21+4x2
Explicação:
using d/dx (tan^-1x) = 1/(1+x^2)ddx(tan−1x)=11+x2
differentiating using the color(blue)(" chain rule ") chain rule
here x = 2x , hence
rArr d/dx(tan^-1 2x) = 1/(1+(2x)^2) d/dx(2x) ⇒ddx(tan−12x)=11+(2x)2ddx(2x)
= 1/(1+4x^2) .2 = 2/(1+4x^2) =11+4x2.2=21+4x2