Qual é a derivada do arctan (2x) arctan(2x)?

Responda:

2/(1+4x^2)21+4x2

Explicação:

using d/dx (tan^-1x) = 1/(1+x^2)ddx(tan1x)=11+x2

differentiating using the color(blue)(" chain rule ") chain rule

here x = 2x , hence

rArr d/dx(tan^-1 2x) = 1/(1+(2x)^2) d/dx(2x) ddx(tan12x)=11+(2x)2ddx(2x)

= 1/(1+4x^2) .2 = 2/(1+4x^2) =11+4x2.2=21+4x2