Como você encontra linhas tangentes horizontais e verticais depois de usar a diferenciação implícita de # x ^ 2 + xy + y ^ 2 = 27 #?

Responda:

#y = pm 6#
#x = pm6#

Explicação:

Dado #f(x,y)=x^2+xy+y^2-27=0#

#df=f_x dx + f_y dy = 0#

so

#dy/dx = - f_x/(f_y) = (2x+y)/(2y+x)#

As linhas tangentes horizontais têm #f_x = 0->x = -y/2# e as linhas tangentes verticais têm #f_y = 0->x = -2y#

Então, para horizontais

#f(-y/2,y) = y^2/4-2y^2+y^2-27=0->y=pm6#

e para verticais

#f(x,-x/2) = x^2-x^2/2+x^2/4 - 27=0->x=pm 6#