Como você simplifica #Ln e ^ 3 #?

Responda:

#ln(e^3)=3#

Explicação:

Por definição, #log_a(x)# é o valor tal que #a^(log_a(x)) = x#
A partir disso, deve ficar claro que, para qualquer #a# e #b#, #log_a(a^b)=b#, Como #log_a(a^b)# é o valor tal que #a^(log_a(a^b))=a^b#.

Como o logaritmo natural #ln# é apenas outra maneira de escrever a base#e# logaritmo #log_e#, temos

#ln(e^3) = log_e(e^3) = 3#