Como você usa a diferenciação implícita para encontrar # (d ^ 2y) / dx ^ 2 # de # x ^ 3 + y ^ 3 = 1 #?

Ao diferenciar implicitamente duas vezes, podemos encontrar
#{d^2y}/{dx^2}=-{2x}/y^5#.

Primeiro, vamos encontrar #{dy}/{dx}#.
#x^3+y^3=1#
diferenciando em relação a #x#,
#Rightarrow 3x^2+3y^2{dy}/{dx}=0#
subtraindo #3x^2#,
#Rightarrow3y^2{dy}/{dx}=-3x^2#
dividindo por #3y^2#,
#Rightarrow {dy}/{dx}=-{x^2}/{y^2}#

Agora, vamos encontrar #{d^2y}/{dx^2}#.
diferenciando em relação a #x#,
#Rightarrow{d^2y}/{dx^2}=-{2x cdot y^2-x^2 cdot 2y{dy}/{dx}}/{(y^2)^2}
=-{2x(y^2-xy{dy}/{dx})}/{y^4}#
conectando #{dy}/{dx}=-{x^2}/{y^2}#,
#Rightarrow{d^2y}/{dx^2}=-{2x[y^2-xy(-x^2/y^2)]}/y^4=-{2x(y^2+x^3/y)}/y^4#
multiplicando o numerador e o denominador por #y#,
#Rightarrow{d^2y}/{dx^2}=-{2x(y^3+x^3)}/y^5#
conectando #y^3+x^3=1#,
#Rightarrow{d^2y}/{dx^2}=-{2x}/y^5#