Cosx=1-tan^2(x/2)/1+tan^2(x/2)?
Cosx=(1-tan^2(x/2))/(1+tan^2(x/2))cosx=1−tan2(x2)1+tan2(x2)
Cosx=(1-((1-cosx)/sinx)^2)/(1+((1-cosx)/sinx)^2)cosx=1−(1−cosxsinx)21+(1−cosxsinx)2
Cosx=(1-((1-2cosx+cos^2x)/sin^2x))/(1+((1-2cosx+cos^2x)/sin^2x))cosx=1−(1−2cosx+cos2xsin2x)1+(1−2cosx+cos2xsin2x)
Cosx=(sin^2x/sin^2x-((1-2cosx+cos^2x)/sin^2x))/(sin^2x/sin^2x+((1-2cosx+cos^2x)/sin^2x))cosx=sin2xsin2x−(1−2cosx+cos2xsin2x)sin2xsin2x+(1−2cosx+cos2xsin2x)
Cosx=((2cosx-2cos^2x)/sin^2x)/((2-2cosx)/sin^2x)cosx=2cosx−2cos2xsin2x2−2cosxsin2x
Cosx=(cancel(2)cosxcancel((1-cosx)))/cancel(sin^2x)*cancel(sin^2x)/(cancel2cancel((1-cosx))
cosx=cosx