Qual é a integral de int [(xe ^ (2x)) / (2x + 1) ^ 2] dx ∫[xe2x(2x+1)2]dx?
Outro método:
I=int(xe^(2x))/(2x+1)^2dxI=∫xe2x(2x+1)2dx
Nós podemos tentar Integração por partes com u=e^(2x)u=e2x e dv=x/(2x+1)^2dxdv=x(2x+1)2dx.
Observe que v=intx/(2x+1)^2dxv=∫x(2x+1)2dx. De locação t=2x+1t=2x+1, isso implica que x=1/2(t-1)x=12(t−1) e que dt=2dx=>dx=1/2dtdt=2dx⇒dx=12dt, assim v=int(1/2(t-1))/t^2 1/2dt=1/4int(1/t-1/t^2)dt=1/4lnabst+1/(4t)...v=∫12(t−1)t212dt=14∫(1t−1t2)dt=14ln|t|+14t...
Tb, du=2e^(2x)dxdu=2e2xdx.
Então:
I=1/4e^(2x)(lnabs(2x+1)+1/(2x+1))-int2e^(2x)1/4(lnabs(2x+1)+1/(2x+1))dxI=14e2x(ln|2x+1|+12x+1)−∫2e2x14(ln|2x+1|+12x+1)dx
I=e^(2x)/4lnabs(2x+1)+e^(2x)/(4(2x+1))-1/2inte^(2x)lnabs(2x+1)dx-1/2inte^(2x)/(2x+1)dxI=e2x4ln|2x+1|+e2x4(2x+1)−12∫e2xln|2x+1|dx−12∫e2x2x+1dx
Tentando IBP na segunda integral, deixe:
u=-1/2e^(2x)=>du=-e^(2x)dxu=−12e2x⇒du=−e2xdx
dv=dx/(2x+1)=>v=1/2lnabs(2x+1)dv=dx2x+1⇒v=12ln|2x+1|
Assim:
I=e^(2x)/4lnabs(2x+1)+e^(2x)/(4(2x+1))-1/2inte^(2x)lnabs(2x+1)dx-e^(2x)/4lnabs(2x+1)+1/2inte^(2x)lnabs(2x+1)dxI=e2x4ln|2x+1|+e2x4(2x+1)−12∫e2xln|2x+1|dx−e2x4ln|2x+1|+12∫e2xln|2x+1|dx
I=e^(2x)/(4(2x+1))+CI=e2x4(2x+1)+C