Qual é a integral de int [(xe ^ (2x)) / (2x + 1) ^ 2] dx ?

Outro método:

I=int(xe^(2x))/(2x+1)^2dx

Nós podemos tentar Integração por partes com u=e^(2x) e dv=x/(2x+1)^2dx.

Observe que v=intx/(2x+1)^2dx. De locação t=2x+1, isso implica que x=1/2(t-1) e que dt=2dx=>dx=1/2dt, assim v=int(1/2(t-1))/t^2 1/2dt=1/4int(1/t-1/t^2)dt=1/4lnabst+1/(4t)...

Tb, du=2e^(2x)dx.

Então:

I=1/4e^(2x)(lnabs(2x+1)+1/(2x+1))-int2e^(2x)1/4(lnabs(2x+1)+1/(2x+1))dx

I=e^(2x)/4lnabs(2x+1)+e^(2x)/(4(2x+1))-1/2inte^(2x)lnabs(2x+1)dx-1/2inte^(2x)/(2x+1)dx

Tentando IBP na segunda integral, deixe:

u=-1/2e^(2x)=>du=-e^(2x)dx
dv=dx/(2x+1)=>v=1/2lnabs(2x+1)

Assim:

I=e^(2x)/4lnabs(2x+1)+e^(2x)/(4(2x+1))-1/2inte^(2x)lnabs(2x+1)dx-e^(2x)/4lnabs(2x+1)+1/2inte^(2x)lnabs(2x+1)dx

I=e^(2x)/(4(2x+1))+C