Como você encontra o limite de (ln x) ^ (1 / x) (lnx)1x quando x se aproxima do infinito?

Responda:

lim_(xrarroo) (ln(x))^(1/x) = 1

Explicação:

Começamos com um truque bastante comum ao lidar com expoentes variáveis. Podemos pegar o log natural de algo e depois aumentá-lo como expoente da função exponencial sem alterar seu valor, pois são operações inversas - mas isso nos permite usar as regras dos logs de maneira benéfica.

lim_(xrarroo) (ln(x))^(1/x) = lim_(xrarroo) exp(ln((ln(x))^(1/x)))

Usando a regra de expoente de logs:

=lim_(xrarroo) exp(1/xln(ln(x)))

Observe que é o expoente que varia conforme xrarroo para que possamos focar nele e mover a função exponencial para fora:

=exp(lim_(xrarroo)(ln(ln(x))/x))

Se você observar o comportamento da função logarítmica natural, perceberá que, como x tende ao infinito, o valor da função também tende ao infinito, embora muito lentamente. Quando tomamos ln(ln(x)) temos uma variável dentro da função log que tende ao infinito muito lentamente, o que significa que temos uma função geral que tende ao infinito EXTREMAMENTE lentamente. O gráfico abaixo varia apenas até x=1000 mas demonstra o crescimento extremamente lento de ln(ln(x)) mesmo em comparação com o lento crescimento de ln(x).

insira a fonte da imagem aqui

A partir desse comportamento, podemos inferir que x exibirá um crescimento assintótico muito mais rápido e, portanto, o limite do expoente será zero. color(blue)("This means that overall limit = 1.")

Também podemos abordar esse ponto com o governo de L'hopital. Precisamos que o limite esteja em forma indeterminada, ou seja, 0/0 or oo/oo então verificamos que este é o caso:

lim_(xrarroo)ln(ln(x)) = ln(ln(oo)) = ln(oo) = oo

lim_(xrarroo) x = oo

Este é realmente o caso, então o limite se torna:

=exp(lim_(xrarroo)((d/(dx)(ln(ln(x))))/(d/(dx)x)))

Diferenciar y = ln(ln(x)) reconhecer que temos y(u(x)) e use o regra da cadeia

(dy)/(dx) = (dy)/(du)(du)/(dx)

u = ln(x) implies (du)/(dx) = 1/x

y = ln(u) implies (dy)/(du) = 1/u = 1/(ln(x))

therefore (dy)/(dx) = 1/(ln(x))*1/x = 1/(xln(x))

Derivado de x is 1. O limite passa a ser:

=exp(lim_(xrarroo)((1/(xln(x)))/1)) = exp(lim_(xrarroo)(1/(xln(x))))

Abordamos que ambas as funções no denominador tendem ao infinito, portanto, temos

exp(1/oo) = exp(0) = 1