Como você diferencia f (x) = xlnx-x ?
Responda:
ln(x), Através da Regra do produto
Explicação:
f'(x)=d/(dx)[xln(x)]-d/(dx)[x]
f'(x)=d/(dx)[x]*ln(x)+x*d/(dx)[ln(x)]-1
{Regra do produto: d / (dx) [f (x) g (x)] = f '(x) g (x) + f (x) g' (x) }
f'(x)=1*ln(x)+x*1/x-1
{Lembre-se de que o derivado de ln (x) é 1 / x .}
color(red)(f'(x)=ln(x))cancel(+x/x)cancel(-1)