Como você diferencia #f (x) = xlnx-x #?

Responda:

#ln(x)#, Através da Regra do produto

Explicação:

#f'(x)=d/(dx)[xln(x)]-d/(dx)[x]#

#f'(x)=d/(dx)[x]*ln(x)+x*d/(dx)[ln(x)]-1#
{Regra do produto: # d / (dx) [f (x) g (x)] = f '(x) g (x) + f (x) g' (x) # }

#f'(x)=1*ln(x)+x*1/x-1#
{Lembre-se de que o derivado de #ln (x) # é # 1 / x # .}

#color(red)(f'(x)=ln(x))cancel(+x/x)cancel(-1)#