Qual é a integral de sin ^ 2 (x) cos ^ 4 (x) sin2(x)cos4(x)?
Responda:
1/192(12x+3sin2x-3sin4x-sin6x)+C1192(12x+3sin2x−3sin4x−sin6x)+C.
Explicação:
Deixei I=intsin^2xcos^4xdxI=∫sin2xcos4xdx.
Usaremos as seguintes identidades para simplificar o Integrand: -
[1] :2sin^2theta=1-cos2theta, [2] : 2cos^2theta=1+cos2theta[1]:2sin2θ=1−cos2θ,[2]:2cos2θ=1+cos2θ
[3] : 2cosCcosD=cos(C+D)+cos(C-D)[3]:2cosCcosD=cos(C+D)+cos(C−D)
Agora, sin^2xcos^4x=1/8(4sin^2xcos^2x)(2cos^2x)sin2xcos4x=18(4sin2xcos2x)(2cos2x)
=1/8(2sinxcosx)^2(1+cos2x)=18(2sinxcosx)2(1+cos2x)
=1/8(sin2x)^2(1+cos2x)=18(sin2x)2(1+cos2x)
=1/8(sin^2 2x)(1+cos2x)=18(sin22x)(1+cos2x)
=1/16(2sin^2 2x)(1+cos2x)=116(2sin22x)(1+cos2x)
=1/16(1-cos4x)(1+cos2x)=116(1−cos4x)(1+cos2x)
=1/16(1-cos4x+cos2x-cos4xcos2x)=116(1−cos4x+cos2x−cos4xcos2x)
=1/16{1-cos4x+cos2x-1/2(cos6x+cos2x)}=116{1−cos4x+cos2x−12(cos6x+cos2x)}
=1/32(2+cos2x-2cos4x-cos6x)=132(2+cos2x−2cos4x−cos6x)
:. I=1/32int(2+cos2x-2cos4x-cos6x)dx
=1/32(2x+sin(2x)/2-(2sin(4x))/4-sin(6x)/6)
=1/192(12x+3sin2x-3sin4x-sin6x)+C.
Desfrute de matemática.!